Abstract

The presence of a conductive component in bone scaffolds can be helpful in facilitating the intracellular electrical signaling among cells as well as improving bone healing when electromagnetic stimulation is applied. In this study, poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) as a biocompatible conductive polymer was incorporated into a hard tissue scaffold made of gelatin (Gel) and bioactive glass. The in vitro results revealed that incorporation of an optimized amount of poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) into the scaffold composition enhanced cell viability more than four times after 14 days incubation, compared to the scaffold without poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate). The in vivo studies demonstrated the amount of new bone formation of Gel/bioactive glass/poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) scaffolds was significantly higher than the Gel/bioactive glass scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.