Abstract

In this paper, optical properties of silicene and germanene under compressive homogeneous strain are investigated within the density function theory. Results show that the optical-field response are strongly depend on the amount of applied strain. As the strain increases, the amount of optical absorption increases. In fact, by applying the compressive strain in the silicene and germanene, the band gap at the Dirac points decreases where ultimately reaches zero. Depending on the amount of strain, absorption peak shows red and blue shifts by increasing the strain. This can be realized by considering the change of the band gap energy and transition rates by the strain. In both of these graphene-like structures, the light absorption along zigzag direction is greater than that of the armchair direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.