Abstract

FeCrAl alloys are proposed and being intensively investigated as alternative accident tolerant fuel (ATF) cladding for nuclear fission application. Herein, the influence of major alloy elements (Cr and Al), reactive element effect and heating schedules on the oxidation behavior of FeCrAl alloys in steam up to 1500 °C was examined. In case of transient ramp tests, catastrophic oxidation, i.e. rapid and complete consumption of the alloy, occurred during temperature ramp up to above 1200 °C for specific alloys. The maximum compatible temperature of FeCrAl alloys in steam increases with raising Cr and Al content, decreasing heating rates during ramp period and doping of yttrium. Isothermal oxidation resulted in catastrophic oxidation at 1400 °C for all examined alloys. However, formation of a protective alumina scale at 1500 °C was ascertained despite partial melting. The occurrence of catastrophic oxidation seems to be controlled by dynamic competitive mechanisms between mass transfer of Al from the substrate and transport of oxidizing gas through the scale both toward the metal/oxide scale interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call