Abstract

HfTiO 2 layers of various stoichiometries where deposited by physical vapor depostion on TiN and TiN/Ru bottom electrodes (BE) in order to determine the influence of composition, conduction band offset, and BE morphology on the overall leakage current characteristics. Current-voltage spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and conductive atomic force microscopy studies show increased leakage current and charge trapping with increased Ti content. The interplay of conduction band offset and trap density were studied. The influence of Ru bottom electrode roughness on the leakage current is higher than the influence of Ti content and low conduction band offset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.