Abstract

This study is important for the fields of pharmaceutical nano-drug suspension, biomedical engineering, pressure surges and food processing systems. The slip condition is necessary for polishing internal cavities and artificial heart valves in a variety of manufactured objects, micro- or nano-channels, and applications. Low Reynolds number (Re[Formula: see text] and long wavelength ([Formula: see text]) considerations are used in the formulation of the mathematical model at low non-Newtonian parameter values, nonlinear boundary conditions and the governing nonlinear equation are analytically solved using the perturbation method. The graphs of frictional force, pressure rise, velocity, pressure gradient, and streamline graphs are done using Wolfram MATHEMATICA software. In this paper, we compared the results of the total slip condition with those of the first-order slip condition and the absence of any slip effects. It has been noticed that increasing the suction and injection parameters leads to a decrease the pressure rate with complete slip effects, partial slip effects and no slip effects. We show that an increase in the third grade fluid parameter [Formula: see text] increases the magnitude of axial velocity. From a physical perspective, it shows the shear thinning characteristic, which causes a decrease in viscosity and an increase in fluid velocity. Frictional force behaves differently when compared to pressure rate. In other words, the pressure gradient acts as an obstacle to the peristalsis-driven flow. The objective of the study is to find the impact of the peristaltic flow phenomena and the impact of peristaltic on third-grade non-Newtonian fluid where the suction and injection are prevailing which is similar to the thing in biomechanical devices, like blood vessels, etc. there is a change of oxygen and carbon dioxide from the tissue layer to the fluid within the blood vessel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.