Abstract

Primary cultures of rat renal proximal tubular (PT) and distal tubular (DT) cells from control and uninephrectomized (NPX) Sprague-Dawley rats were established to study whether the altered toxicological responses identified in freshly isolated cells are maintained in culture. Previous work showed that primary cultures of PT cells from hypertrophied rat kidneys maintained their differentiated properties, as evidenced by their high respiratory rate, active transport function, transport and metabolism of glutathione, and their hypertrophic phenotype. In the present study, primary cultures of PT cells from NPX rat kidneys, but to a much lesser extent DT cells, were more susceptible to cellular injury induced by either mercuric chloride, KCN, or tert-butyl hydroperoxide (tBH), than corresponding cells from normal rat kidneys. Direct comparisons of cytotoxicity and lipid peroxidation induced by tBH in freshly isolated renal cells showed that the primary cultures of cells from NPX rat kidneys retained their altered susceptibility relative to cells from control rats. These results show that primary cultures of PT cells from NPX rats are more sensitive to cellular injury induced by three mechanistically distinct toxicants, demonstrating their usefulness in the study of the molecular and biochemical basis for the altered phenotype of compensatory renal growth. This is the first report validating the use of a mammalian renal cell culture model to study the toxicological effects of compensatory renal cellular hypertrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call