Abstract
Since thyroid hormones influence urinary excretion of catecholamines after exposure to cold, the effects of hyper- and hypo-thyroidism on adrenal tyrosine hydroxylase (TH) (EC 1.14.16.2), phenylethanolamine-N-methyl transferase (PNMT) (EC 2.1.1.28), and serum dopamine-beta-hydroxylase (DbetaH) (EC 1.14.17.1) of rats of 23 and 4 degrees C were studied. TH changes resembled the urinary excretion pattern at 4 degrees C in being higher after 8 days than after 1 day of exposure, and in declining as acclimation occurred. At 23 degrees C, TH activity of hypothyroid rats was significantly higher than in euthyroid or hyperthyroid animals, and after 1 day at 4 degrees C the value increased even more. While in the hypothyroid animals at 4 degrees C the concentration of adrenal catecholamines was less, the epinephrine to norepinephrine ratio was higher than at 23 degrees C. Very high TH activity with a decline in catecholamine concentration suggests that the capacity of TH had been exceeded. PNMT activity was significantly elevated in this group. TH activity was not decreased in the hyperthyroid group at 23 degrees C, and was increased after 8 days at 4 degrees C, suggesting that circulating thyroid hormones have no direct inhibitory effect on TH. Serum DbetaH was elevated after exposure to 4 degrees C, regardless of thyroid hormonal status. The activation of adrenal TH in hypothyroid rats at 23 degrees C and of TH, PNMT, and serum DbetaH at 4 degrees C is probably the result of increased activity of the sympathetic nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.