Abstract

ABSTRACTThis experiment evaluated the potentials of cocoa pod husk (CPH)-based compost on okra and soil chemical properties. Three CPH-based compost: CPH+ Neem leaf (CPH+ NL), CPH+ Poultry manure (CPH+ PM) and CPH+ PM+ NL were prepared. The treatments; 25, 50, 75, 100 kg N/ha of each compost and NPK mineral fertilizer at 40, 50, 60 kg N/ha and control, were applied to 5 kg soil each and arranged in a completely randomized design in three replicates. Two varieties of okra (NH47-4 and LD88) were grown for six weeks and residual effect evaluated. The Nitrogen, Phosphorus, and Potassium uptake of okra were determined. Pre- and post-cropping soil analyses were done. Data were analyzed using ANOVA and means separated by Duncan Multiple Range Test at α0.05. The results showed that the nutrient uptake of okra consistently increased with CPH-based compost compared to control in both main and residual cropping. Nitrogen uptake ranged from 53.6 (60 kg N/ha NPK) to 106.7 (50 kg N/ha CPH+ PM) and 16.10 (50 kg N/ha NPK) to 55.06 (25 kg N/ha CPH+ PM+ NL); Phosphorus uptake ranged from 6.9 (25 kg N/ha CPH+ NL) to 24.1 (60 kg N/ha NPK) and 3.70 (25 kg N/ha CPH+ NL) to 9.98 (50 kg N/ha CPH+ PM+ NL), while potassium uptake ranged from 166.4 (25 kg N/ha CPH+ NL) to 244.48 (25 kg N/ha CPH+ PM+ NL) and 64.06 (40 kg N/ha NPK) to 122.29 (75 kg N/ha CPH+ NL) mg/plant in main and residual cropping, respectively. Organic carbon, pH, nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and sodium (Na) were also significantly increased by the CPH-based compost. It could, therefore, be concluded that CPH-based compost could be a good fertilizer for okra production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call