Abstract

Magnetite nanoparticles (NPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as heat mediators in Magnetic Fluid Hyperthermia. For the latter, one of the goal of the research is to obtain materials with improved hyperthermic properties. A valuable strategy is the increase of the magnetic anisotropy of commonly employed magnetite through the total or partial substitution of Fe2+ ions with Co2+ ions. Here we present a study on a family of 8 nm Co-doped magnetite NPs (CoxFe3−xO4), with composition ranging from pure magnetite (x=0) to stoichiometric cobalt ferrite (x=1), aimed to investigate the evolution of the hyperthermic properties with the increase of Co content. We found that the addition of a small amount of Co is enough to sharply increase the Specific Absorption Rate (SAR). The SAR further increases with x but it reaches a maximum for an intermediate value (x=0.6). Such anomalous behavior is ascribed to the intrinsic magnetic properties of the material, and, in particular, to the magnetic anisotropy, which displays the same peculiar trend. The Co-doping thus may represent an effective strategy to improve the poor hyperthermic efficiency of very small magnetite NPs (<10 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call