Abstract

Heavy metals that enter the environment due to natural processes or industrial activities, when accumulated, have a negative impact on organisms, including microorganisms. Microorganisms have developed various adaptations to heavy metal compounds. The aim of our work was to investigate the influence of ferric citrate and cobalt (II) chloride on biomass accumulation, indicators of free radical damage and activity of enzymes of the antioxidant defense system of bacteria Rhodopseudomonas yavorovii IMV B-7620, that were isolated from the water of Yavorivske Lake (Ukraine, Lviv region), which was formed as a result of flooding of a sulfur quarry. We used cultural, photometric methods, and statistical processing of the results was performed using two-way ANOVA and factor analysis. It was found that ferric citrate at a concentration of 1–12 mM causes inhibition of the accumulation of biomass of bacteria Rh. yavorovii IMV B-7620 up to 44.7%, and cobalt (II) chloride at a concentration of 1–15 mM – up to 70.4%, compared with the control. The studied concentrations of ferric citrate and cobalt (II) chloride cause free radical damage to lipids and proteins of Rh. yavorovii IMV B-7620. As a result of two-way ANOVA we found that under the influence of ferric citrate statistically significant changes in biomass accumulation, lipid hydroperoxides and thiobarbiturate reactive species content, superoxide dismutase activity were predetermined by increasing the concentration of metal salts as well as increasing the duration of cultivation of bacteria, while the content of diene conjugates and catalase activity changed with increasing duration of cultivation. Under the influence of cobalt (II) chloride, statistically significant changes in all studied indicators were found both due to the increase in the concentration of metal salts and with increasing duration of bacterial cultivation. The studied parameters of Rh. yavorovii IMV B-7620 cells under the influence of ferric citrate and cobalt (II) chloride are combined into two factors, that explain 95.4% and 99.2% of the total data variance, respectively. Under the influence of ferric citrate, the first latent factor included diene conjugates, thiobarbiturate reactive species, carbonyl groups in proteins, which are closely linked by a direct bond and inversely related to the content of lipid hydroperoxides and catalase activity. The second latent factor included duration of cultivation of bacteria, biomass accumulation, and superoxide dismutase activity, which are inversely related to lipid hydroperoxide content and catalase activity. Under the influence of cobalt (II) chloride, the first latent factor included the content of lipid hydroperoxides, carbonyl groups in proteins, as well as catalase and superoxide dismutase activities, which are inversely related to bacterial biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.