Abstract

Diatoms are responsible for ~40% of marine primary production and are key players in global carbon cycling. There is mounting evidence that diatom growth is influenced by cobalamin (vitamin B(12)) availability. This cobalt-containing micronutrient is only produced by some bacteria and archaea but is required by many diatoms and other eukaryotic phytoplankton. Despite its potential importance, little is known about mechanisms of cobalamin acquisition in diatoms or the impact of cobalamin scarcity on diatom molecular physiology. Proteomic profiling and RNA-sequencing transcriptomic analysis of the cultured diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana revealed three distinct strategies used by diatoms to cope with low cobalamin: increased cobalamin acquisition machinery, decreased cobalamin demand, and management of reduced methionine synthase activity through changes in folate and S-adenosyl methionine metabolism. One previously uncharacterized protein, cobalamin acquisition protein 1 (CBA1), was up to 160-fold more abundant under low cobalamin availability in both diatoms. Autologous overexpression of CBA1 revealed association with the outside of the cell and likely endoplasmic reticulum localization. Cobalamin uptake rates were elevated in strains overexpressing CBA1, directly linking this protein to cobalamin acquisition. CBA1 is unlike characterized cobalamin acquisition proteins and is the only currently identified algal protein known to be implicated in cobalamin uptake. The abundance and widespread distribution of transcripts encoding CBA1 in environmental samples suggests that cobalamin is an important nutritional factor for phytoplankton. Future study of CBA1 and other molecular signatures of cobalamin scarcity identified here will yield insight into the evolution of cobalamin utilization and facilitate monitoring of cobalamin starvation in oceanic diatom communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.