Abstract

This paper presents results of density functional theory (DFT) studies on structural, electronic, and magnetic properties of novel Y2FeSi Heusler material characterized by spin polarization at Fermi level of [Formula: see text] and magnetic moment of 1.56 [Formula: see text]. The total magnetic moment of investigated material is dominated by Iron sites, while magnetic moments coming from Yttrium sites are aligned antiparallel to the Iron. Here, we introduced Co and Mn substitutions to alter the magnetic and electronic properties of the studied material. The Heusler alloys are very sensitive to electronic structure changes induced by ionic substitutions, which allowing to specifically modulate their properties. The Co-substitution lowered the total magnetic moment to [Formula: see text][Formula: see text]1.20 [Formula: see text] and Mn caused a rise to [Formula: see text][Formula: see text]1.93 [Formula: see text]. Introduction of Mn resulted in [Formula: see text] spin polarization. We hope that this study will promote further theoretical as well as experimental interest in these types of compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call