Abstract

A continuously variable transmission (CVT) is an emerging automotive transmission technology that offers a continuum of gear ratios between desired limits. The present research focuses on developing models to understand the influence of clearance on the dynamic performance of a chain CVT drive. Clearances may arise in such a CVT during the assembly process or during extensive continual operation of the system, which further leads to wear and failure of the system. A detailed planar multibody model of a chain CVT is developed in order to accurately capture the dynamics characterized by the discrete structure of the chain, which causes polygonal excitations in the system. A suitable model for clearance between the chain links is embedded into this multibody model of the chain CVT. Friction between the chain link and the pulley sheaves is modeled using continuous Coulomb approximation theory. The mathematical models, the computational scheme, and the results corresponding to different loading scenarios are discussed. The results discuss the influence of clearance parameters on the dynamic performance, the axial force requirements, and the torque transmitting capacity of a chain CVT drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.