Abstract

AbstractMudstones exert a fundamental control on the flow of both aqueous and nonaqueous fluids in sedimentary basins. Predicting their flow and storage properties requires an understanding of pore size and connectivity, yet there are very few quantitative descriptions of pore systems of mineralogically and texturally well‐characterized mudstones. We use a combination of electron microscopy, mercury injection capillary pressure porosimetry, and CO2 sorption methods to generate a quantitative description of the size distribution, connectivity, and evolution of pore systems in a sequence of Posidonia Shale mudstones buried to 100–180 °C. We place the pore data into a detailed mineralogical, petrographical, and textural context to show that the nature and evolution of porosity and pore systems can be described in terms of associations with clay‐rich, microfossil‐rich, and organic matter‐rich domains, common to many mudstones. Pore size distributions are described by power laws, and pore systems are well connected across the full nanometer‐micrometer spectrum of pore sizes. However, connected networks occur primarily through pores <10 nm radius, with typically 20–40% of total porosity associated with pores with radii < ~3 nm, within both organic matter and the clay matrix. Clay‐rich, microfossil‐rich, and organic matter‐rich domains have distinct pore size distributions which evolve in very different ways with increasing thermal maturity. We suggest that the flow of aqueous and nonaqueous fluids depends not only on the overall connectivity of pores but also the larger‐scale connectivity and wetting state of clay‐rich, microfossil‐rich, and organic matter‐rich domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.