Abstract

The ferrite process has been developed to purify wastewater containing heavy metal ions and recycle valuable metals by forming chromium ferrite. However, organic matter has an important influence on the crystallization behavior and stability of chromite synthesized from chromium-containing wastewater. We focused on the influence and effect mechanism of two typical organic acid salts (citrate (CA) and tartrate (TA)) on the process of chromium mineralization. It was found that the presence of organic matter leads to the increase of the residual content of Cr in CA system (0.50mmol/L) and TA system (0.61mmol/L) in the solution, and the removal of chromium was mainly due to the surface adsorption of Fe(III) hydrolysate. The decreased crystallinity of mineralized products is ascribed to the completion of organic compounds with Fe(II) and Fe(III), which hinders the formation of ferrite precursors. There was bidentate and monodentate chelation between -COO- and metal ions in the CA system and TA system respectively, which resulted in a stronger affinity between CA and iron. This study provides the underlying mechanism for Cr(III) solid oxidation by the ferrite method in an organic matter environment and is of great significance to prevent and control chromium pollution in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call