Abstract

ABSTRACTFiller–rubber composites were prepared by mixing chloroacetated natural rubber (CNR) with silica, carbon black (CB), or calcium carbonate using a two‐roll mill. The interactions between the CNR and fillers, including silica, carbon black, and calcium carbonate, were characterized based on glass transition temperature (Tg) and shear storage modulus (G′). The results showed that both the Tg and G′ values of the CNR‐Si composite were found to be higher than those of the CNR–CB and CNR–CaCO3 composites, indicating the existence of the CNR and silica interaction. The outstanding direct interaction between the CNR rubber matrix and silica without using a coupling agent was believed to be due to hydrogen bonds that formed between the hydroxyls of the silanol groups of silica and the carbonyls in the chloroacetate groups of CNR molecules. Moreover, it was also found that silica dispersed and distributed in the CNR matrix much better than in the natural rubber matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43076.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.