Abstract

This experimental study shows the conjunction of fracture mechanics with the ability of high-performance concrete (HPC) to resist an aggressive chloride environment. Moreover, the influence of a chloride-contaminated environment on the fracture toughness and fracture resistance under the mixed mode I/II is presented. The experimental study was performed considering different aggressivity levels of the environment, water, and fully saturated sodium chloride solution (NaCl-). The experimental tests were performed on a Brazilian disc specimens to test the indirect tensile strength ft and on a Brazilian disc with a central notch to evaluate the fracture toughness KIC and the fracture resistance under the mixed mode I/II. The mixed mode I/II fracture resistance was evaluated by the generalised maximum tangential stress (GMTS) criterion. The level of chloride contamination present and its boundary in the concrete was estimated by the colorimetric method using silver nitrate (AgNO3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.