Abstract

We studied the influence of chloride ions (Cl(-)), introduced as CdCl(2), on the seeded growth synthesis of colloidal branched CdSe(core)/CdS(pods) nanocrystals. This is carried out by growing wurtzite CdS pods on top of preformed octahedral sphalerite CdSe seeds. When no CdCl(2) is added, the synthesis of multipods has a low reproducibility, and the side nucleation of CdS nanorods is often observed. At a suitable concentration of CdCl(2), octapods are formed and they are stable in solution during the synthesis. Our experiments indicate that Cl(-) ions introduced in the reaction reduce the availability of Cd(2+) ions in solution, most likely via formation of strong complexes with both Cd and the various surfactants. This prevents homogeneous nucleation of CdS nanocrystals, so that the heterogeneous nucleation of CdS pods on top of the CdSe seeds is the preferred process. Once such optimal concentration of CdCl(2) is set for a stable growth of octapods, the pod lengths can be tuned by varying the relative ratios of the various alkyl phosphonic acids used. Furthermore, at higher concentrations of CdCl(2) added, octapods are initially formed, but many of them evolve into tetrapods over time. This transformation points to an additional role of Cl species in regulating the growth rate and stability of various crystal facets of the CdS pods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.