Abstract

The present study investigated the effects of jasmonic acid (JA), chitosan, and salicylic acid (SA) on the accumulation of phenolic compounds in germinated buckwheat. A total of six phenolics were detected in the buckwheat treated with different concentrations of SA (50, 100, and 150 mg/L), JA (50, 100, and 150 μM), and chitosan (0.01, 0.1, and 0.5%) using high-performance liquid chromatography (HPLC). The treatment with 0.1% chitosan resulted in an accumulation of the highest levels of phenolic compounds as compared with the control and the 0.01 and 0.5% chitosan treatments. The treatment with 150 μM JA enhanced the levels of phenolics in buckwheat sprouts as compared with those observed in the control and the 50 and 100 μM JA-treated sprouts. However, the SA treatment did not affect the production of phenolic compounds. After optimizing the treatment concentrations of elicitors (chitosan and JA), a time-course analysis of the phenolic compounds detected in the germinated buckwheat treated with 0.1% chitosan and 150 μM JA was performed. Buckwheat treated with 0.1% chitosan for 72 h showed higher levels of phenolic compounds than all control samples. Similarly, the germinated buckwheat treated with JA for 48 and 72 h produced higher amounts of phenolic compounds than all control samples. This study elucidates the influence of SA, JA, and chitosan on the production of phenolic compounds and suggests that the treatment with optimal concentrations of chitosan and JA for an optimal time period improved the production of phenolic compounds in germinated buckwheat.

Highlights

  • Fagopyrum esculentum Moench, belonging to the Polygonaceae family, is an important pseudocereal cultivated and consumed in East Asian countries

  • We carefully suggested that it might be due to increased gene expression levels of phenylpropanoid-related genes by the chitosan and jasmonic acid (JA) elicitation since our previous studies reported that the methyl jasmonate increased gene expression levels of phenlypropanoid-related genes and enhanced the accumulation of phenolic compounds in radish sprouts [27] and in Agastache rugosa Kuntze [28], respectively

  • This study revealed that treatment with elicitors chitosan or jasmonic acid can enhance the production of phenolic compounds in germinated buckwheat

Read more

Summary

Introduction

Fagopyrum esculentum Moench (common buckwheat), belonging to the Polygonaceae family, is an important pseudocereal cultivated and consumed in East Asian countries. It has high agricultural and medicinal values [1]. Dietary fibers and phenolics are plant food constituents that play a beneficial role in human health, and use of these constituents as functional ingredients has gradually increased [7]. These constituents are usually studied separately due to differences in their metabolic pathways, physicochemical and biological properties, and chemical structures [8]. Recent studies have reported that phenolics, as fiber copassengers, are bound to the fiber fraction and can be released along the gastrointestinal (GI)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.