Abstract

To evaluate the prevention and treatment effect of a Chinese herbal formula (CHF) on the bone disease of Cobb broiler chickens, compare its efficacy with Bisphosphonates (BPs), and provide a theoretical basis for studying the nutritional regulation technology of CHF to improve the bone characteristics of broiler chickens. In this study, 560 one-day-old Cobb broiler chickens were examined for the influence of Chinese herbal formula (CHF) and Bisphosphonates (BPs). Different doses of CHF and BPs were added to the diet, and the 30- and 60-day-old live weight, tibial bone strength, the microstructure of the distal femur cancellous bone, blood biochemical indexes related to bone metabolism, and genes related to bone metabolism were determined and analyzed. The results showed that the live weight of Cobb broilers fed with CHF and BPs in the diet was as follows: The live weight of the CHF group was higher than that of the normal control (NC) group, while the live weight of the BPs group was lower than that of the NC group; the CHF and BPs improved the bone strength of Cobb broilers and increased the elastic modulus, yield strength, and maximum stress of the tibia. CHF and BPs increased the cancellous bone mineral density (BMD), bone tissue ratio (BV/TV), bone surface area tissue volume ratio (BS/TV), bone trabecular thickness (Tb.Th), and bone trabecular number (Tb.N) in the distal femur, and decreased the bone surface area bone volume ratio (BS/BV) and bone trabecular separation (Tb.Sp). Thus, the microstructure of the bone tissue of the distal femur was improved to a certain extent. Both the CHF and the BPs also increased the serum levels of the vitamin D receptor (VDR), osteoprotegerin (OPG), and alkaline phosphatase (ALP), and decreased the content of osteocalcin (OT). Meanwhile, CHF and BPs upregulated the expression of osteogenic genes (BMP-2, OPG, Runx-2) to promote bone formation and downregulated the expression of osteoclastic genes (RANK, RANKL, TNF-α) to inhibit bone resorption, thus affecting bone metabolism. Conclusion: The CHF could improve the skeletal characteristics of Cobb broilers by upregulating the expression of bone-forming-related genes and downregulating the expression of bone-breaking-related genes, thus preventing and controlling skeletal diseases in Cobb broilers. Its effect was comparable to that of BPs. Meanwhile, the CHF-H group achieved the best results in promoting the growth and improvement of the skeletal characteristics of Cobb broilers based on the live weight and skeletal-characteristics-related indexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call