Abstract

Due to potential implications, boundary layer analysis of chemically reacting Carreau nanofluid has been carried out to examine flow properties of ferromagnetic fluid over a stretched sheet in the presence of magnetic dipole, for shear thinning and shear thickening fluids. Furthermore, the transportation of heat under thermal radiation, heat generation, the Brownian, and thermophoresis aspects has been evaluated. The dimensionless form of highly nonlinear coupled partial differential equations is obtained using suitable similarity transformations and then solved numerically by well-known bvp 4 c technique via MATLAB based on the shooting method. The outcomes of physical quantities are presented through graphs and numerical benchmarks. Moreover, outcomes for skin fraction, Sherwood and Nusselt numbers for velocity, concentration, and temperature are also estimated in this study. The present study reveals that the concentration and thermal boundary layer thicknesses were higher for shear thinning n < 1 fluid when compared with shear thickening n > 1 fluids, but reverse effects are to be observed for momentum boundary layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.