Abstract

Polymer-induced heteronucleation can dramatically increase the nucleation rate of pharmaceuticals. However, directly comparing the heteronucleation rates of different polymer functionalities is often convoluted with changing physical or structural aspects of heteronuclei. Here, we report a methodology for comparing nucleation efficiencies of different functionalities on polymer heteronuclei of uniform topology with the goal of identifying those functionalities that best accelerate nucleation of a model pharmaceutical. It was found that the previously employed design for additives to speed acetaminophen crystallization underperforms a modified framework that accounts for the effect of competitive solvent binding. These findings are informed by a survey of interactions from the CSD and not only serve to aid in the controlled crystallization of pharmaceuticals, but also provide insight into the mechanism of heteronucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.