Abstract

The goal of this study is to investigate the chemical constituents and rheological properties of three different binders used in the State of Qatar. Binders were designated as WL (source 1, low density), WH (source 1, high density) and AH (source 2, high density). Binder composition analysis was carried out using the saturates, aromatics, resins and asphaltene determinator (SAR-AD) technique. The percentages of saturates, aromatics, resins and asphaltenes were measured, and from those, the total pericondensed aromatics (TPA), absorbance aging index (AAI), and colloidal instability index (CII) were obtained and their relationship to rheological test results was investigated. In the rheological investigation, the linear viscoelastic properties of these binders were evaluated using a frequency sweep test. The rutting characteristics were evaluated using the percentage of recovery and non-recoverable creep compliance values from the multiple stress creep and recovery (MSCR) test, while the fatigue resistance was assessed using the linear amplitude sweep (LAS) test. The WL binder was found to have the highest stiffness, which is associated with the highest TPA content. From the MSCR test, the AH binder had the lowest rut resistance. This binder also had the lowest CII value, which represents the balanced chemical composition of this material. Out of the three binders, WH had the highest AAI value which is related to the least fatigue life as measured in the LAS test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.