Abstract

This paper delves into the intricate interplay between chemical and thermal radiation in the context of an unstable magnetohydrodynamic(MHD) oscillatory flow through a porous medium. The fluid under investigation is presumed to be incompressible, electrically conductive, and radiating with the additional influence of a homogeneous magnetic field applied perpendicular to the channel’s plane. Analytical closedform solutions are derived for the momentum, energy, and concentration equations providing a comprehensive understanding of the system’s behavior. The investigation systematically explores the impact of various flow factors, presenting their effects through graphical representations. The governing partial differential equations (PDE) of the boundary layer are transformed into a set of coupled nonlinear ordinary differential equations (ODE) using a closed-form method. Subsequently, an artificial neural network (ANN) is applied to these ODEs, and the obtained results are validated against numerical simulations. The temperature profiles exhibit oscillatory behavior with changes in the radiation parameter (N), revealing insights into the system’s dynamic response. Furthermore, the paper uncovers that higher heat sources lead to increased temperature profiles. Additionally, concentration profiles demonstrate a decrease with escalating chemical reaction parameters, with a reversal observed as the Schmidt number (Sc) increases. This study highlights the efficacy of an ANN model in providing highly efficient estimates for heat transfer rates from an engineering standpoint. This innovative approach leverages the power of artificial intelligence to enhance our understanding of complex fluid magnetohydrodynamics and porous media flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.