Abstract

The infl uence of the geometric dimensions and confi guration of slot contactless seals on the obliteration of the gaps of plunger pairs at the design and calculation stage of drive systems of electric power systems units is considered. The combined eff ect of working fl uid contamination and the adsorption eff ect on the overgrowth of the living section of the channel was revealed. The fl ow rate during sample shedding was reduced simultaneously as a result of the channel overgrowing with contamination particles and adsorption, i.e. the formation of boundary fi lms on the channel walls. Leaks through the gap at concentric and eccentric position of the plunger in the sleeve are determined. The minimum gap is found, at which the obliteration process is stabilized and loose mud formations are washed away by the fl ow of the working fl uid. The infl uence of the pressure drop at the ends of the slot gap on the channel obliteration process was revealed. With an increase in the pressure drop, the process of stratifi cation of adsorbed layers of polar molecules accelerates, resulting in an increase in the number of contamination particles trapped in the gap per unit of time. With an increase in the temperature of the working fl uid, the process of channel obliteration accelerates, which is confi rmed by experiments. With an oscillating plunger, the fl ow through the annular gap is less than with a stationary one. This is due to the fact that the oscillating plunger occupies a position in the sleeve close to the concentric one, at which leaks are minimal. A stable fl ow rate is obtained when the working fl uid fl ows through the gaps of the plunger pairs performing reciprocating oscillating movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call