Abstract

We report the performance of GaAs camel-gate FETs and its dependence on device parameters. In particular, the performance dependence on the doping-profile of a channel was investigated. In this study, one-step, bi-step, and tri-step doping channels with the same doping-thickness product are employed in camel-gate FETs, while keeping other parameters unchanged, For a one-step doping channel FET, theoretical analysis reveals that a high doping channel would provide a large transconductance which is suitable for logic applications. Decreasing the channel concentration increases the drain current and the barrier height. For a tri-step doping channel FET, it is found that the output drain current and the barrier height remain large and the relatively voltage-independent transconductance is also increased. These are the requirements for the large input signal power amplifiers. A fabricated camel-gate FET with a tri-step doping channel exhibits a large drain current density larger than 750 mA/mm and a potential barrier greater than 1.0 V. Furthermore, the relatively voltage-independent transconductance is as high as 220 mS/mm and the applied gate voltage is up to +1.5 V. A 1.5/spl times/100 /spl mu/m/sup 2/ device is found to have a f/sub t/ of 30 GHz with a very low input capacitance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.