Abstract

Flat plate floor systems are most often constructed in residential or mixed-use buildings for a variety of reasons such as shortening the construction time, reducing the floor height and achieving spatial flexibility. Additionally, flat plate floor systems have the largest volume among the structural members, so these systems have the largest influence on determining the carbon dioxide (CO2) emissions and costs incurred in the building construction and design stages. To analyze how CO2 emissions and amount of building materials in the floor system are affected by design parameters that can be considered in design and construction stages, a sustainable design model that minimizes CO2 emissions and construction costs of the flat plate floor system is developed. The developed technique was applied to design of flat plate floors with 126 different dimensions to analyze the effect of the design parameters on costs and CO2 emissions. Additionally, the performance of the proposed method was evaluated by applying it to design of a 47-story mixed-use building. The results indicates that active design parameters that determined the environmental impact and cost of flat plates were the yield strength of rebar, rebar diameter, slab thickness, and the compressive strength of concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.