Abstract

On the basis of configuration interaction calculations, we first describe the nature of the lowest singlet and triplet excited states in oligothiophenes ranging in size from two to six rings. We calculate the vertical excitation energies from the singlet ground state S0 to the first one-photon allowed singlet excited state S1 as well as the energy difference between the ground state and the lowest triplet state T1. The computed transition energies are in very good agreement with the measured values and indicate a strong confinement of the lowest triplet. We also uncover the nature of the higher-lying triplet excited state Tn that is coupled via a large oscillator strength to T1. The evolution with chain length of the T1−Tn excitation energies compares well with the experimental evolution based on photoinduced absorption data. Next, we investigate the geometry relaxation phenomena occurring in the S1 and T1 states; more pronounced and localized bond-length deformations are calculated in the triplet state t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call