Abstract

This paper intended to investigate the influence of rare earth Ce(III) ions on the corrosion behavior of carbon steel in two acid solutions (0.5 M HCl and 0.25 M H2SO4) in order to control the rate of hydrogen evolution in those systems. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. SEM was used to examine the sample surfaces immersed in acid solutions containing the optimal threshold Ce(III) concentration (0.1 mM). All results reveal that the corrosion resistance of carbon steel in HCl is superior to that in H2SO4 due to the higher rate of hydrogen production in the latter. A model for the corrosion process mechanism and inhibition by Ce(III) salt for carbon steel in the two tested media is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call