Abstract

Cerium oxide nanoparticles (CeO2 NPs) affected the production of extracellular polymeric substances (EPSs), and thus might bring challenges for sludge pumping and mixing. In the present study, we investigated the rheological behavior of sludge before and after extraction of different EPSs fractions under various CeO2 NPs concentrations. It was found that the removal of loosely bound EPSs (LB-EPSs) could affect the shear stress (τ) and apparent viscosity (η), and the changes were dependent on CeO2 NPs concentrations. The removal of tightly bound EPSs (TB-EPSs) either with or without the addition of CeO2 NPs significantly decreased the yield stress (τy) and the limiting viscosity (η∞). Furthermore, the dynamic (strain, frequency and time) sweep measurements proved that the storage modulus (G') decreased after the extraction of TB-EPSs, indicating the weakened elastic and solid-like properties. The fluctuated content of polysaccharide in LB-EPSs and the increased amount of protein in TB-EPSs were likely to contribute to the variation of viscoelastic behaviors after the removal of LB-EPSs and TB-EPSs, respectively. In addition, the decreased rheological properties of sludge was also related to the increased zeta potential, decreased particle size and the removal of key organic matters of (104–106 Da) with the extraction of stratified EPSs. These results were significant to take advantages of the rheological properties for sludge treatment in the presence of NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call