Abstract
The input impedance of the systemic arterial tree of the dog has been computed by Fourier analysis. It was shown that a distance between pressure and flow transducers of less than 2 cm results in appreciable errors which manifest themselves mainly in the phase of the input impedance. The input impedance for controls, occlusions at various locations in the aorta, and an increase and decrease of peripheral resistance were studied. For the same experiments, the total arterial compliance was calculated from the peripheral resistance of the diastolic aortic-pressure curve. The characterstic impedance of the ascending aorta was also estimated. The impedance in the control situation may be modelled by means of a 3-element Windkessel consisting of a peripheral resistance and (total) arterial compliance, together with a resistance equal to the characteristic impedance of the aorta. The occlusions of the aorta show that blockage at (and beyond) the trifurcation do not result in a detectable change in input impedance, except for a slight increase of the peripheral resistance. The more proximal an aortic occlusion, the more effect it has on the pattern of the input impedance. When the aorta is occluded at the diphragm, or higher, the single (uniform) tube appears to be a much better model than the Windkessel. Occlusion of one or both carotid arteries increases the mean pressure; consequently not only the peripheral resistance increases but also the total arterial compliance decreases. The Windkessel with increased peripheral resitance and decreased compliance is again a good model. After a sudden release of occlusion of the aorta, the arterial system has a low peripheral resistance and may also be modelled by the Windkessel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.