Abstract

In this research, the geyser phenomenon occurring in a small-diameter two-phase closed thermosyphon (TPCT) was observed and the instability of the device was discussed. Geyser phenomena interfere with the natural circulation of internal working fluids, increasing the thermal resistance of the system and contributing to the instability of the device. This study attempts to improve the thermal performance and stability of the system using cellulose nanofiber (CNF) fluid as the working fluid. The use of CNF fluid was observed to reduce the magnitude of temperature change inside the evaporator of the TPCT significantly. Moreover, it improved the local boiling heat transfer coefficient by 3.1 %, 87.3 %, and 181.2 % on average when the filling ratios are 0.25, 0.5, and 0.75, respectively. Studying the local heat transfer performance and instability will be helpful in designing a more stable TPCT efficiently. Additionally, the findings of this study can be applied to solar thermal power generation or heat pipe research for cooling strategies in computing servers, depending on the input heat load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call