Abstract
The initiation step of the polymerization of acrylate materials is first studied in detail by UV-visible spectroscopy, showing the involvement of each species of the three-component photosensitizer. Then, the implementation of a combined holographic and physicochemical investigation approach is used to determine the influence of photoluminescent CdSe/ZnS quantum dots (QDs) in the photopolymerization and grating recording process in composites containing those QD nanoparticles. The fluorescence microscopy evidences the dynamic distribution profile of QDs due to their diffusion from the irradiated zones to the interface between the bright and the dark zones and, finally, their accumulation in nonirradiated zones. At the same time, the infrared spectroscopy shows that the presence of QDs provides a noticeable decrease of the polymerization rate, which favors the diffusion of the monomer and QDs. These two phenomena contribute to the enhancement of the refractive index modulation depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.