Abstract
We propose a potential scheme for carrying out two-qubit unconventional geometric logic gates on two identical superconducting quantum-interference-device (SQUID) qubits coupled to a single-mode microwave field. The geometric logic gate operation is performed in two lower flux states, and the excited state |2⟩ does not participate in the procedure. The SQUIDs undergo no transitions during gate operation. Thus, the decoherence due to energy spontaneous emission based on the levels of SQUIDs is suppressed. We present the two-qubit unconventional geometric logic gates in both an ideal cavity and a real cavity with decay. Discussions about the fidelity and the success probability of the proposed scheme as well as the experimental feasibility are given in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.