Abstract

The cooperativity of six cations (Ca2+, Mg2+, Zn2+, Al3+, Cr3+ and Fe3+), three pectins (sugar beet, high and low methyl esterified), three dispersed phases (medium chain triglycerides (MCT), orange oil and hexadecane), time (30 days) and pH (2.0 and 6.0) has been investigated in the formation and stability against coarsening of oil-in-water emulsions. Cations generally influenced emulsion stability in the following order (most stable) Ca2+ ​> ​Mg2+ ​> ​Al3+ ​> ​Cr3+ ​> ​Zn2+ ​> ​Fe3+ (least stable). This order largely coincided with that of the strength of pectin-cation interactions showing that the higher the affinity of cation for pectin the less stable the emulsion. More stable emulsions were formed with sugar beet pectin, which was also unresponsive to the presence of cations, followed by high- and then low-methyl esterified samples. At pH 2.0 all pectins showed their best emulsification performance whereas shifting pH to 6.0 severely impaired emulsification capacity and longer term stability against droplet growth. Smaller droplets were created with hexadecane under all conditions studied followed by MCT and orange oil in agreement with their aqueous solubilities. The present results advance our understanding of the stabilisation of emulsions using pectin and allow us to tailor their functionality for applications in food, pharmaceutical and biomedical industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.