Abstract

Paschen curves were studied using different cathode materials such as magnesium, zinc, and carbon graphite by discharge in argon gas of a pressure range between 0.08 and 3 Torr using a parallel plates configuration. The first and second Townsend coefficients (α and γ, respectively) and the ionization efficiency (η) of different cathode materials were deduced from Paschen curves as a function of the reduced field (E/P). The minimum breakdown voltage was found to be about 242 V for Mg material, which has the lowest work function, while carbon graphite has a higher breakdown voltage of 283 V due to its higher work function. The second coefficient γ was increased as a function of E/P and has higher values for materials of lower work functions, and a similar trend of γ is obtained as a function of the ion mean energy. On the other hand, the first coefficient α has a reverse behavior with both E/P and the work function of the cathode materials compared with the second coefficient. The ionization efficiency of the three cathode materials is identical, as η depends only on the gas properties and not the cathode material. η has a maximum value of about 0.025 V−1 for an E/P of about 185 Vcm−1Torr−1, corresponding to the maximum ionizing ability of electrons. The validation of the breakdown results has been confirmed by conferring with other published experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call