Abstract

BackgroundCasein kinase II (CK2) is involved in multiple tumor-relevant signaling pathways affecting proliferation and apoptosis. CK2 is frequently upregulated in acute B-lymphoblastic leukemia (B-ALL) and can be targeted by the ATP-competitive CK2 inhibitor CX-4945. While reduced proliferation of tumor entities including B-ALL after CX-4945 incubation has been shown in vitro and in vivo, the detailed way of action is unknown. Here, we investigated the influence on the PI3K/AKT and apoptosis cascades in vivo and in vitro for further clarification.MethodsA B-ALL xenograft model in NSG mice was used to perform in vivo longitudinal bioluminescence imaging during six day CX-4945 treatment. CX-4945 serum levels were determined at various time points. Flow cytometry of bone marrow and spleen cells was performed to analyze CX-4945-induced effects on tumor cell proliferation and distribution in B-ALL engrafted mice. ALL cells were enriched and characterized by targeted RNA sequencing. In vitro, B-ALL cell lines SEM, RS4;11 and NALM-6 were incubated with CX-4945 and gene expression of apoptosis regulators BCL6 and BACH2 was determined.ResultsIn B-ALL-engrafted mice, overall tumor cell proliferation and distribution was not significantly influenced by CK2 inhibition. CX-4945 was detectable in serum during therapy and serum levels declined rapidly after cessation of CX-4945. While overall proliferation was not affected, early bone marrow and spleen blast frequencies seemed reduced after CK2 inhibition. Gene expression analyses revealed reduced expression of anti-apoptotic oncogene BCL6 in bone marrow blasts of CX-4945-treated animals. Further, BCL6 protein expression decreased in B-ALL cell lines exposed to CX-4945 in vitro. Surprisingly, levels of BCL6 opponent and tumor suppressor BACH2 also declined after prolonged incubation. Simultaneously, increased phosphorylation of direct CK2 target and tumor initiator AKT was detected at respective time points, even in initially pAKT-negative cell line NALM-6.ConclusionsThe CK2 inhibitor CX-4945 has limited clinical effects in an in vivo B-ALL xenograft model when applied as a single drug over a six day period. However, gene expression in B-ALL cells was altered and suggested effects on apoptosis via downregulation of BCL6. Unexpectedly, the BCL6 opponent BACH2 was also reduced. Interactions and regulation loops have to be further evaluated.

Highlights

  • Casein kinase II (CK2) is involved in multiple tumor-relevant signaling pathways affecting proliferation and apoptosis

  • Effects of targeted CK2 inhibition on Acute B-lymphoblastic leukemia (B-ALL) xenograft mice Previous studies involving CX-4945 anti-tumor regimens are mainly based on observations made at time points several days after the last therapeutic dose

  • To examine tumor cell proliferation and distribution, longitudinal bioluminescence imaging (BLI) of all animals was performed on d7, d10, d13 and d15

Read more

Summary

Introduction

Casein kinase II (CK2) is involved in multiple tumor-relevant signaling pathways affecting proliferation and apoptosis. CK2 phosphorylates a variety of target proteins with numerous functions involved in cell cycle regulation, cell growth, proliferation, transcription, translation and apoptosis It influences pathways involved in tumorigenesis like PI3K/AKT, JAK/STAT and NFkB [2, 3]. Several mechanisms have been discussed to identify the inhibitor’s anti-proliferative mode of action These include intervention or modification of signaling pathways like PI3K/AKT, DNA repair response, angiogenesis, splicing regulation, stress-induced cell death or epigenetic modulation [10,11,12,13,14,15,16]. It is still unknown how anti-leukemic effects are evoked in B-ALL. Induction of CK2-mediated apoptotic cascades or inhibition of anti-apoptotic pathways by CX-4945 might be mechanisms involved

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.