Abstract

The present study reports on the finite element analysis (FEA) of the femoral head in a process of preparation for a program for the realistic simulation of correctional osteotomies of the proximal femur. While the material properties have been studied extensively, only few publications consider the influence of the cartilage layer geometry on FE stimulation of the hip joint. Various models of the femoral head with and without the cartilage layer are generated and analysed. On looking at the maximum surface stresses, we found a strong influence of the cartilage layer and the subchondral osseous layer on the magnitude of the von Mises equivalent stress. The model with an anatomically realistic cartilage layer and compact bone shows stresses of between 4 and 5.5 MPa, depending on the position of the joint, while the model with a concentric cartilage layer has a maximum von Mises stress of 0.8 MPa. Only on simulation of a "realistic" cartilage layer, with a maximum thickness at the "pole" and minimum thickness at the "equator" do the changes in stress distribution--determined by changes in the position of the femoral head--become visible. Owing to major artefacts and the inability to create a realistic cartilage layer, voxel-based models of the femur are not suitable for the simulation of the femoral head surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.