Abstract

As a direct consequence of the restrictions on the use of hexavalent chromium compounds, the demand for a suitable replacement has arisen. In this work the electrodeposition of thick chromium layers (>1 µm) from a trivalent electrolyte is investigated with the aim to identify an electrolyte composition for the deposition of hard functional coatings. These layers can be used to surface finish tribological components experiencing high wear rates or mechanical stress in applications such as coating printing cylinders, feed rollers or piston rods. The influence of different carboxylic acids (malonic acid, malic acid, glycolic acid) on the deposition has been studied. The effect of current density on the current efficiency was investigated using in-situ microgravimetry. For a technical application the electrolyte containing malonic acid was the most promising one and was further investigated regarding the properties of the deposits, such as surface morphology, crack formation, composition, thickness and hardness, aiming at properties as close as possible to those of hexavalent chromium. In comparison to hexavalent chromium, the layer of trivalent chromium showed the same properties in terms of crack formation, hardness and layer thickness (> 1 µm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call