Abstract

Catalytic activity of iron based catalysts in the production of multi-walled carbon nanotubes (MWCNTs) has been investigated. The effect of the carbon source (ethane or isobutane), catalyst support (Al2O3 or SiO2), iron loading, catalyst reduction temperature and reaction temperature on yield and quality of carbon products has been examined. The structural and morphological properties of catalyst and carbon products obtained have been analyzed by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), thermogravimetric analysis (TGA) and X-ray powder diffraction (XRD). The iron-based catalysts supported on alumina seem to be efficient systems for the production of carbon nanotubes from chemical vapor deposition (CVD) of isobutane with very interesting yields. The opportune calibration of reaction parameters, such as iron loading and reaction temperature, can in fact drive the synthesis toward the formation of high quality CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call