Abstract

This paper presents the impact of incorporating carbon nanotubes (CNTs) into the 3D printing of cementitious materials, along with the effective dispersion of CNTs. Compared to the control mix, adding CNTs with superplasticizer significantly enhanced the printing quality by reducing the error in height of two-layers from 38% to 30% and an 81% enhancement in the buildability. Moreover, rheology properties revealed shear-thinning behaviour with lower viscosity, resulting in improved flowability. The progressive increase in CNT concentrations up to 0.2% yielded a noteworthy improvement in the mechanical properties. At 28 days, the incorporation of 0.2% CNTs resulted in a significant increase in the flexural strength, compressive strength, and Young's modulus by 99%, 72%, and 43%, respectively, compared to the mix containing silica fume. Microstructural investigation of the CNT-cement matrix revealed nanoscale crack bridges formed by CNTs, reinforcing the cementitious material and improving its mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call