Abstract

The article presents the results of testing the influence of carbon nanotubes on the mechanical parameters of cement stones under HPHT conditions. Multi-walled carbon nanotubes (MWCNTs) with an external diameter of 10–20 nm and a length of 10–30 μm were used for testing. 0.1% of carbon nanotubes was added to the cement slurry. Laboratory tests of cement slurries were carried out at Oil and Gas Institute – National Research Institute. The tests were carried out under conditions of increased pressure and temperature in the temperature range of 60–130°C and the pressure range of 25–80 MPa. CEM I 42.5R Portland cement and Class G drilling cement were used to make the slurries at temperature of 60oC. Cement slurries for temperatures from 80oC to 130oC were prepared on the basis of class G drilling cement. The recipes were developed on the basis of the requirements to be met by cement slurry for the cementing of casing under conditions of very high temperatures and reservoir pressures. The densities of tested slurries ranged from 1,840 kg/m3 (slurries at a temperature of 60°C) to 2.250 kg/m3 (slurries with the addition of hematite).Compressive strength tests and adhesion measurements were carried out after 2, 7, 14 and 28 days. Cement slurry recipes with very good technological parameters were developed, which after curing (after 28 days of hydration) showed very high values of compressive strength, reaching up to 44 MPa. Cements were characterized by high values of adhesion to pipes reaching up 8 MPa after 28 days and flexural strength of about 11 MPa. The test results show that the addition of carbon nanotubes has a positive effect on the mechanical strength of cement stones with their addition. The stones modified in this way are characterized by high compressive strength and high adhesion to steel pipes. Further research is needed to determine the influence of carbon nanotubes on the microstructure of hardened cement slurries. It is also necessary to conduct further research on the determination of the optimal amounts of these agents and the selection of the most compatible additives for cement slurries that work optimally in combination with nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call