Abstract

The mechanical properties and amorphization response of a carbon nanotube (5 wt.%) boron carbide (CNT-B4C) composite with 1 μm grain size are investigated, and compared to those of coarse-grained (10 μm grain size) and ultrafine-grained (0.3 μm grain size) monolithic boron carbides. The quasi-static and dynamic uniaxial compressive strengths for CNT-B4C were statistically the same as those of the ultrafine-grained ceramic and higher than the coarse-grained material, contradicting the expected grain size hierarchy (Hall-Petch-type relationship). Addition of CNTs to B4C resulted in decreased quasi-static hardness compared to the large grain size material; however, dynamic hardness was substantially improved compared to quasi-static values. CNT pullout and crack bridging were observed to be possible toughening mechanisms. Finally, Raman spectroscopy was used to quantify amorphization, and it was concluded that addition of CNTs to boron carbide does not alter the propensity for amorphization, but does improve mechanical properties by enhanced toughening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.