Abstract

Rigid polyurethane (PU) nanocomposite foams filled with multi-walled carbon nanotubes (MWCNTs), functionalized MWCNTs (f-MWCNTs) and functionalized graphene sheets (FGS) were synthesized by reactive foaming to obtain electromagnetic interference (EMI) shielding materials. Our study indicates that the electrical properties of rigid PU nanocomposite foams are strongly dependent on the foaming evolution, cellular structure and density of these materials, which are themself influenced by the morphology, aspect ratio and surface functionalization of the carbon-based nanofillers. The largest EMI shielding effectiveness was obtained for 0.35 wt% MWCNTs with an electrical conductivity increased of two orders of magnitude ascribed to the formation of a better interconnected network within the systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.