Abstract

We have studied the influence of multiple carbon treatments on the properties of silica porous glasses. Each step of each carbon treatment started with filling the voids of porous glass with carbon. During the following anneal carbon interacted with the walls of the voids. It was shown that low dimensional silicon clusters were formed inside the voids as a result of this reaction. In the experiments the photoluminescence spectra and conductivity of carbon-processed specimens were measured. The size-distribution of voids in porous glasses was calculated from absorption—desorption isotherms. An original technique was proposed that allowed to obtain the size-distribution of silicon clusters from the positions of peaks in the photoluminescence spectra. Correlation between the photoluminescence intensity and the sizes of pores was revealed. The observed oscillations in the shapes of the photoluminescence spectra in subsequent cycles of carbon treatment are explained by changes of the number of clusters corresponding to definite peaks in the size distribution spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call