Abstract

Thispaper presents the results of the studies of the combined influence of properties of carbide substrate and composite coatings on tool wear resistance in machining of chromium-based heat-resistant alloys. It was established that the efficiency of carbide tools with coatings is determined by a combination of the properties of the carbide substrate and the coating itself. For carbides with relatively low strength and crack resistance, the efficiency of coatings appeared to be unsatisfactory because of brittle fracture of the substrate and thus intensive failure of coating. High heat resistance of cobalt-rhenium alloy is not realized during deposition of coating because of blocking of the most important property of heat-resistant Co/Re binder, i.e. the ability to hold carbide grains under significant deterioration of carbide matrix even at a high temperature in the cutting zone.The maximum efficiency of the coating in machining of chromium-based heat-resistant alloy is provided withcarbide tools made with a balanced ratio of hardness, heat resistance and strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call