Abstract

The design and operation of aquaculture tanks should minimize stagnant areas especially in the immediate vicinity of the fish. In tanks with pelagic fish, mixing caused by the water flow and by fish swimming is sufficient to maintain dissolved oxygen and metabolite concentrations in the immediate vicinity of the fish that are similar to those in the main water body. Given the behavior of sedentary benthic species, such as the California halibut ( Paralichthys californicus), and their tendency to remain motionless on the bottom of aquaculture tanks, often in layers that are several fish deep, water quality may stratify with the worse conditions occurring in the area where they fish are lying. The purpose of this study was to evaluate the influence that California halibut (∼450 g average weight) may have on the vertical profile of oxygen concentration in a raceway (239 cm long, 28 cm wide) and a circular tank (92 cm diameter) operated at two water depths (10 and 20 cm). Oxygen was measured at each centimeter of the vertical profile both in an area with fish and without fish to assess their influence. Results showed a lower oxygen concentration in the near-bottom region of the raceway and circular tanks. The phenomenon was most pronounced in the raceway operated at a 20 cm depth, but was also observed in the circular tank operated at 20 cm and in the raceway at 10 cm. Measurements were also taken in samples collected just in front of or directly from a fish's mouth. A zone of depressed oxygen concentration in the immediate vicinity of the fish was documented, with oxygen concentrations as low as 50% of the measured tank effluent concentration. The magnitude of the depression was greater in raceways than in circular tanks and in 20 cm water depth than in 10 cm depth. The fish remained sedentary in these zones of depressed oxygen concentration for extended periods of time and frequently exhibited hyperventilation. The oxygen concentrations in the vicinity of the fish were consistently lower than the concentrations measured in the tank effluent. Therefore, effluent measurements did not provide an accurate representation of conditions to which the fish were exposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call