Abstract
There has been great demand of calcium fortified dairy products as they can serve as an ideal vehicle for carrying extra calcium to fulfill the nutritional needs but there is need to generate information on the effect of fortification of calcium on the physical properties of these products. In the present study, the calcium enriched mango yogurt was prepared after fortification of pasteurized yogurt mix with 50 mg Ca/100 ml of calcium lactate, this level selected from a preliminary study of sensory evaluation. Fortification of yogurt with calcium lactate at this level significantly ( P<0.005) increased the water holding capacity (WHC) by 2.99% on 1st day of storage. WHC of calcium fortified fruit yogurt was higher than control fruit yogurt on 7th and 14th day of storage. Measurements performed on slowly stirred samples (flow curves and final apparent viscosity) showed that calcium-enriched fruit yogurt had stronger structures. Calcium fortified fruit yogurt showed less shear thinning behavior as compared to control. Also, apparent viscosity measurements at constant shear rate showed a significantly ( P<0.05) less decrease in initial apparent viscosity in calcium fortified fruit yogurt. However, no statistically significant ( P>0.05) difference was observed in tan δ values of control and calcium fortified fruit yogurt indicating similar nature of bonds involved in the gel structure formation of both the yogurt samples. The more firm structure of the calcium fortified fruit yogurt is thus attributed to the higher extent of colloidal calcium phosphate cross-linking between casein micelles due to increased calcium content by fortification. Also flavor, color, and body and texture scores of control and calcium fortified fruit yogurt did not show any significant difference ( P>0.05).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.