Abstract

ABSTRACT Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride–induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography–Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call