Abstract

The objective of this investigation was to determine whether calcium channel blocker (CCB) treatment effectively restores normal baseline mechanical function in diabetic myocardium and to evaluate its effect on the interval-strength relationship. Wistar rats were made diabetic with streptozotocin (55 mg/kg, IV). Left-ventricular papillary muscles from normal and diabetic (10 weeks) rats were superfused with Tyrode's solution at 30 degrees C. A subgroup of diabetic and normal animals received daily injections of verapamil or nifedipine (10 mg/kg, IP; 8 weeks) to compare the effectiveness of a phenylalkylamine to a dihydropyridine in reversing diabetes-induced contractile dysfunction in vitro. Muscles were electrically stimulated at 0.5 Hz with suprathreshold stimuli, and the following parameters were measured: peak tension developed, time to-peak tension, time-to-90% relaxation, and the maximum velocities of tension development and decay. Experimental diabetes was characterized by: severe hyperglycemia, hepatomegaly, reduced body weight gain, cardiomegaly, and increased plasma phospholipid levels. In addition, baseline values of peak tension developed, time to-peak tension, and time-to-90% relaxation were significantly greater in muscles from diabetic animals. Chronic nifedipine treatment reduced hyperglycemia and plasma phospholipid levels, normalized body weight gain, and reduced both heart and liver sizes in diabetic animals. Nifedipine treatment completely reversed diabetes-induced prolongation in both time-to-peak tension and time-to-90% relaxation. In diabetic myocardium, a slightly positive component was present in the interval-strength relationship between 0.01 and 1 Hz, resulting in a rightward shift in the entire curve across a wide range of stimulation frequencies (0.01-5 Hz). This positive component was absent in muscles from diabetic animals treated with both CCBs, and verapamil produced a leftward shift in the frequency response curve. The results of this study suggest that chronic nifedipine treatment may be more effective than verapamil in restoring normal baseline myocardial mechanical function, reducing hyperglycemia and hyperlipidemia, as well as attenuating both cardiac and liver enlargement in experimental diabetes. In contrast, verapamil treatment tended to normalize more effectively the inotropic response to changes in stimulation frequency in diabetic myocardium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.